Mesh analysis
- "Loop current" redirects here. For the ocean current in the Gulf of Mexico, see Loop Current. For the electrical signalling scheme, see current loop.
Figure 1: Essential meshes of the planar circuit labeled 1, 2, and 3. R1, R2, R3, 1/sc, and Ls represent the impedance of the resistors, capacitor, and inductor values in the s-domain. Vs and is are the values of the voltage source and current source, respectively.
Mesh currents and essential meshes
A mesh current is a current that loops around the essential mesh and the equations are set solved in terms of them. A mesh current may not correspond to any physically flowing current, but the physical currents are easily found from them.[2] It is usual practice to have all the mesh currents loop in the same direction. This helps prevent errors when writing out the equations. The convention is to have all the mesh currents looping in a clockwise direction.[3] Figure 2 shows the same circuit from Figure 1 with the mesh currents labeled.
Solving for mesh currents instead of directly applying Kirchhoff's current law and Kirchhoff's voltage law can greatly reduce the amount of calculation required. This is because there are fewer mesh currents than there are physical branch currents. In figure 2 for example, there are six branch currents but only three mesh currents.
Setting up the equations
Each mesh produces one equation. These equations are the sum of the voltage drops in a complete loop of the mesh current.[3] For problems more general than those including current and voltage sources, the voltage drops will be the impedance of the electronic component multiplied by the mesh current in that loop.[4]
If a voltage source is present within the mesh loop, the voltage at the source is either added or subtracted depending on if it is a voltage drop or a voltage rise in the direction of the mesh current. For a current source that is not contained between two meshes, the mesh current will take the positive or negative value of the current source depending on if the mesh current is in the same or opposite direction of the current source.[3] The following is the same circuit from above with the equations needed to solve for all the currents in the circuit.
Once the equations are found, the system of linear equations can be solved by using any technique to solve linear equations.
Special cases
There are two special cases in mesh current: currents containing a supermesh and currents containing dependent sources.Supermesh
Dependent sources
See also: Dependent source
A dependent source is a current source or voltage source that depends on the voltage or current of another element
in the circuit. When a dependent source is contained within an
essential mesh, the dependent source should be treated like an
independent source. After the mesh equation is formed, a dependent
source equation is needed. This equation is generally called a
constraint equation. This is an equation that relates the dependent
source’s variable to the voltage or current that the source depends on in the circuit. The following is a simple example of a dependent source.[2]
No comments:
Post a Comment